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DYNASTY U, A NONLINEAR IMPLICIT CODE FOR
RELATIVISTIC ELECTRON BEAM TRACKING STUDIES

I. Introduction

Computational models that are linearized about an axisymmetric equilibrium

have proven invaluable in the study of instabilities of propagating beams. For

example, linearized (monopole/dipole) particle simulation codes1 as well as

linearized codes with simplified models of beam dynamics 2 have been used for hose

instability analysis. However there are other areas of beam propagation

phenomenology in which large departure from axisymmetry are essential and

inevitable, and in which such linearized models can be quite misleading. For

example, in the presence of transverse external magnetic or electric fields,

different "slices" of the beam (defined by the distance from the beam head) may

be subject to different accelerations F/(my), where F is the force and y, which

may be a function of , is the relativistic factor. In such situations, the beam

may tear apart, or alternatively it may reach a non-axisymmetric equilibrium in

which its cohesive self-forces counterbalance the sheared external forces. As

another example, we have recently shown that there are important situations in

which the beam head is in a grossly unstable equilibrium (unstable to simple

zero-frequency transverse displacements) when it is propagating on-axis in a

density or conductivity channel, but in which another and more stable equilibrium

exists with the beam head off-axis by a prescribed amount. Thus axisymmetry is

broken and the beam tends to track the channel by riding down the channel walls,

rather than the channel center. Moreover, the equilibrium displacement from the

channel axis increases from the head of the beam to its tail, increasing the

departure from axisymmetry.

To treat problems such as these, it is necessary to develop a fully three-

dimensional solution of the electromagnetic field equations; monopole/dipole
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approximations will not do. In dealing with very highly relativistic paraxial

beams we shall assume, however, that it is sufficient to solve the three-

: - dimensional form of Lee's reduced field equations3 , rather then the complete

Maxwell equations. This paper deals mainly with the numerical methods which we

have developed to solve the field equations. To date, we have only addressed the

problem of determining non-axisymmetric beam equilibria, in which the beam is

specified by a prescribed density profile nb(r-Y(C), 4).4 Each slice of the beam

is allowed transverse (non-infinitesimal) displacement Y( ), but is not allowed

to distort. No particle dynamics and no time dependences have been studied, to

date. Eventually we shall have to study the stability of these equilibria to

internal distortions and to dynamic modes such as hose, but this can only be done

after the correct equilibria have been determined, a task which is by no means

trivial either computationally, mathematically or physically.

We have already discussed the code Dynasty-I, which was developed as our

first cut to study the interaction between the beam and the channel. It solves

the full set of Lee field equations without linearization. The radial dependence

is solved by finite difference with nonuniform grids. The theta dependence is

solved by fast Fourier transform. The advantage of this method is that the theta

derivatives are more than second order accurate 5. Unfortunately, Dynasty-I is

severely time step limited because it uses an explicit scheme. This can be seen

from the following: the Lee field equations are

aA 2
V- (A + +) + b

2 aA 2
V -- (ye) .(V ) + a v *

2
S



S ...

where n a Both n and a behave like diffusion coefficients in the

equations. Near the head of the beam n is very large, but near the tail a is

very large. The difference can easily be three orders of magnitude. So any

explicit scheme that takes care of the solution at one end will have severe time

-. step limitations at the other end. !

Recently we have developed a new code called Dynasty II. It is similar to

Dynasty I except it solves the field equations implicitly and so the time step

limitation is removed. This code involves the solution of a bi-tridiagonal

system with complex matrix coefficients. The complexity in calculation is offset

by the fact that for the first time, one is able to find the self consistent

fields and the force acting on the beam from head to tail for arbitrary beam

displacement.

We will not present the physics risults investigated by Dynasty II here;

they will be reported in later publications. Instead, we shall concentrate on

the numerical formulation of the code. In section II, we review briefly the

convolution sum, and in Sec. III we apply it to a simple diffusion equation. In

Sec. IV, the method of solving the field equations is described. In Sec. V, we

discuss some applications.

3
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II. Review of Convolution Coding

Let A(8) and B(O) be two functions that depend on O. The expansion of the
S

product of A and B in a finite Fourier series is

N -ite N -im
A(e) B(e)- A e B t

X"-N msN m 

N N -i(" +m) e

1--N m--N m "(

Let n I t + m, then (1) becomes

N m+N -mG
A B " " A B e . (2)

m&-N n-m-N

N -mG
We want to convert (2) to a form like [ ( ) e • Breaking the double sum ton= -N
two sums and interchanging the direction of integration, we obtain

0 n+N 2N N me(3
AB{i r A+ B -]}A Be(3

n--2N m--N n-0 m-n-N

Equation (3) can be approximated by dropping the higher order modes, i.e. we
2N N

replace [ by [ . This can be justified, provided that the magnitude of a
n--2N n--N

transform goes down rapidly with higher mode number. Equation (3) becomes

0 n+N N N -mn

A(B) 8(e) [ 3 + [ -A 3 e . (4)
n--N m--N n-0 m-n-N n- m

4



III. Implicit Formulation of a Diffusion Equation by the Transform Method

The RHS of a diffusion equation,

(r,e) - n(r,e) L[A(r,e)] (5)

2
with L - can be expressed as

0 n+N N N jPdiS - [ ] + [ R H ]} nm(LA)me . (6)
n--N m--N n-0 m-n-N

In matrix form, (6) becomes (dropping ein)

no(LA)_N + 0 * * + nN(LA) °  + 0

0N(LN + n- 2
T1(LA)N + no(LA)_ + . + n-N(LA)I + 0

nN(LA)_N + nNl(LA)_N+I+ no0(LA)o + • . • + nN(LA)N (7)

00

0

nN(LA)o + • • • + no(LA)N

A typical (LA)m term can be expanded to

1 2
(LA) 3( r A (r) (8)

m r

Using a nonuniform grid in radial direction, i.e. using uniform spacing in y,

where



7.

2y r,

2ydy - dr,

we can rewrite (8) as

1 2(LA)., y4 RY A (r) (9
m: 4 3 a 3y 4 , m

In finite different form, (9) is -

(LA)m caiAi+,m + BimAi,m+ yi Ai-,m (10)

where

3 2

a,= Yi+1/2 /(4 y i3),(i

2
-im 2 (12)

Yi-i/2
Yi= 4 i3A 2 ' (13)

A y Yip (14)

Substitute (10) in (7), we obtain for the first row

T1(aA+ A + yA )o i+l,-N i,-N i,-N i i-,-N

Sn~l( iAi+l N+l + 8i,N+lAI -N+1 + YiAiI,N+1) +.

6



r r i fll+ ) --.- ,

+ n-N (aiAi+i,o + i oAi o +yiAi

ai(n0 , n _ N + (rn s i' -1iN+ ** Ni, [N1

AL Ii~l A

-N+-

0 J~ 0
+ Yi(no n A_

i-1

(15)

Similarly we can rewrite all the rows in (7) in a form such as (15).

Consequently, the RHS of (5) can be expressed

Ri A + Si A Ti AI (16)

where A±+l, Ai' Ai- are column matrices with the first element equal to A-N and
the last element equal to AN, and R1 ' Si,'%T are banded matrices with

R, ajflj. (17)7
Si = i 8i' (18)

Ti = i hi'(19)

Z. Ti Yi flis

7 1
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no -I " n-N

n0  no  n-
00

n 2 nj no " " "

n1 i n. . no n_N

N.

nN nN- . n-.

• n • • • j no,
Nn .I

and a i and y are diagonal matrices with their elements equal to ai and

n ~i respectively. Bis also a diagonal matrix, but each element is different

[-.S

.'., i .e ._

i,-N

-0 iN J,

[ - I
* Going back to (5), we finally obtain

-n+l -n [ii An+ i AXn+I + T -n-IAi A i a + +T Ai-1

8
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7

+ i _I] i-i] (21)

n+l n (- (22) ]

The scheme described in (21) is similar to a Crank-Nicholson method and A

is 0(6) and 0(A) . Now we are ready to tackle the Lee field equations, as *01

discussed in the next section.1

9
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IV. Implicit Formulation of the Lee Field Equations by Fourier Transform

3
We can cast Lee's field equations in to the following form:

3A 2 (3nv (A + + J (3

V 2 aA (a 00) +a V 2  (24)

-1*where n a Our aim here is to reduce (23) and (24) to a bi-tridiagonal

system. The conductivity equation in normalized unit is

K + Via K2  p 2

where

K =1.4653

15

K 2 1.7 x 10~

APS3
vi 2 3'

1 +BS+ CS + D

S E= /

A -1.423 x 10-4,

B =9.179 x 106

C 2.656 x 10

10



-17
D 2.820 x 10

E and P are the local electric field Pnd pressure respectively. The equation for

a or n is not solved implicitly because it includes nonlinear terms due to

avalanche and recombination, but we can always time-center the a equation to

ensure accuracy to 0(6) 2 . For simplicity, let us define

a _ (25)
3r

a -(26)

(24) can be rewritten as

2 3A o a" +aV
V I =c TZ arL -13 (27)

r

We shall now transform (23) and (27) term by term. From (23), we have

3A *-njl -n -1A -A,) , (28)

7 2A n+l -- n+l n+

+ An 1 + S An + Ti A n] (29)

and

2 - -n+ -n+l -n+l
2- 01ii+l + i q + T0



+1 [i ~ + gin+ Tj . (30)n 2

The term ('n Jb)n+ 12 is calculated explicitly. From (27), we have

2 3A -1 -- n+l - + -n+l
V 1, , i+, + Ai + -

-[a, Ai+, + i, + yA- 1 , (31)

- (8Y A)-  ai [@i+i- 1i-di+ (i+- qi-1] (32)

and

a + -n2 8 @ = -- 4 1im + i] (33)

r 2y

where I (-1) to avoid confusion with index i. Also

2 2 1 h--+1 h

+.- [ ++ ++ , + 1 Tn1 (34)

In the above, m is a diagonal matrix with element runs from -N to N, and Ri, Si

and T are defined in (17)-(19) with ni replaced by ai. Putting (28)-(30) in

(23) and (31)-(34) in (27), we get the desired bi-tridiagonal form:

(1 2)() 2 ()(2) (G)

(35)

12



a() +a ( 4 ) b (~3 ) + b (4 ) + C(3) + C(4) d (2

i i~l0

(36)

where

6T0

a1  -- (37)

a 1  2- (38)

a3 yi, (39)

44 y T (40)

6
b- (41)

1 2'

b - (42)

b j, (43)

1 1'

(4). 1~ a~ -"

2

c 1 (45)

(2 - (46)

c a (47)

13



(4ca R (48)

n 6 i n 6 Ti n
d (1~An+ + I+-y) j+=A_

in, n - n +( n+1 /2 (9

di~ (2_1+ ) + nib

22) -n -ni a Byi ;2

6 ~~~ (R) - 0,i 6 ) n(0

fore al m. ar unth rignl wetrequire boeriohodo the elcti admanti ieldsbe

fiie and condtins otngar thato s sal th uerbudayie

A (r), % (r) rm, (52)
m m

we have at once

A (0) -0 - ~(0), for m ;1,(53)
m

3A (0) (0)
m 0 mfo m 0.(4
3r -0 r om.(4

14



V. Applications -

To date, Dynasty II has been used only to calculate beam equilibria, using a

simple envelope model of the beam. The beam current density is specified to be

of the form

Jb(r,4) f f [
where f is a specified radial profile shape (usually Bennett), a(c) is the beam

radius, and Y(C) is the transverse displacement of the slice. In most cases, we

have specified a( ) and used the code, iterating back in C from the beam head, to

calculate the equilibrium value of Y(C). We have already mentioned briefly some

applications of the code in Sec. I. We shall elaborate on these areas in some

detail here.

Previous work6 has shown that in the electrostatic regime at the beam head

if the beam radius rb is smaller than the conductivity channel rc, the beam is

attracted towards the channel axis. On the other hand, if rb rc as is usually

true in the beam head, we have shown that when the beam resides on the channel

axis, each slice will see an average force repelling it from the channel. But in

the electrostatic regime, if the beam is displaced sufficiently from the channel

it should see an electric dipole attracting it back toward the channel. Using

Dynasty II to study this problem, we found that when the beam displacement is of

the order of the beam radius and rb rc, a stable equilibrium exists with the

beam off axis, i.e. Y 0 0. The equilibrium displacement from the channel axis S

increases from the head of the beam to its tail. A detailed description of these

results will be presented in a later report.

When an external electric or magnetic force F acts on the beam, each beam

slice will be subject to a different acceleration F/mf if y is a function of C.

15



If the shear in F(C)/my(C) is strong compared to the restoring force due to the

beam's self-pinch, the beam will tear. The break-up will continue along C until

for some value C c the restoring force becomes stronger than the sheared external

force; from this point on, i.e. 4 > the beam will hold together. Once the

"guiding point" c is determined, we can find (a) the deflection due to the force

F, (b) what portion of the beam is torn out, and (c) the value of y( c) , i.e.,

the energy of that part of the beam actually guides the rest of the beam.

If Y( ) differs substantially from '( - 0), then a problem may occur in aiming
c

the beam subject to the influence of this external force. This work is still in

progress and the results will be reported in a later report.
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Appendix

The algorithm for inverting a bi-triagonal system with scalar coefficients

is well known. We shall generalize it to include matrix coefficients. The

. equations are

a i 1  u+ b(22)v+ () () (1 c(2) (.1)
a)u u + a 2i v +b i+ b v cl ) Ui+1 + ci V i+1

and

a(3 u1 + a(4 )v + b(3 )u (4) v + c(3 )u + c (4)v  d1)
i-1 i-1 i i i i i+l i i+[i

(M). cR(M). 0 for 1 m 4.* for 1 i R, witha a i  O o lm
i R

The algorithm is as follows:

First compute

(a 1 (1) b )_ (1),( ) a(2)1,(3)

8(2). b(2)_ (1) (2) a(2) (4)

(4) b(4)_ a(3) (2) (4) (4)

with (M ). bm) for 1 < m 4,

17



and

i d - a 1)M-. - a1 (2 -(2

(2).(1 (2) _ (2)a Yi_ -  a i  yi- 1 ,

with 61). d(l) and 6(2 ). d and

(1). (2)-1 _ M -)1 ,3

= L + i i i i '

-1.1

(2). (' (2)) (4)

ui B 01 c i i  '

-1

() ()( (2) M- (4)- (3)

Pi i i c i

(2). (1)- (- )-1 (2 S(4) (4)
i i ci - i )'

(2)I 
C)) 1),

£ £(81) (2) (1)~ a(4) - S(2

(2 (2) Bl 1 (3 )(2

Using

118

(4 (,'..L( ) (31 (4.



UR

(2)
VR R

we get

£ (2)

- (2) (C3) (4)-~'~v

for (R-1) >i 1.

199



References

1. G. Joyce and M. Lampe, Proceedings of the Tenth Conf. on Numerical Simulation

of Plasmas, San Diego (1983); F. W. Chambers, "Mathematical

Methods for the Ringbearer Simulation Code", Lawrence Livermore National

Laboratory Report UCID-19494 (1982).

2. E. P. Lee, F. W Chambers, L. L. Lodestro and S. S. Yu, "Stable Propagation of

an Electron Beam in Gas," Proc. of the Second Int. Conf. on High Power

Electron and Ion Beam Research and Technology, Cornell Univ., 1977, p. 381;

R. F. Hubbard, M. Lampe, S. Slinker and G. Joyce, Proc. of the Tenth Conf. on

Numerical Simulation of Plasmas, San Diego (1983); "VIPER I - A Multi-

Component Hose Dynamics Code," JAYCOR Tech. Rpt. J207-81-005 (1981).

3. E. P. Lee, "The New Field Equations", Lawrence Livermore Laboratory,

UCID-17826 (1976).

4. B. Hui and M. Lampe, to be published.

5. D. Gottlieb and S. Orszag, Numerical Analysis of Spectral Methods: Theory

and Applications (CBMS-NSF Regional Conf. Series in Applied Mathematics,

SIAM, 1977).

6. J. Masamitsu, S. Yu and F. Chambers, "Beam Tracking Studies With Ringbearer

II", Lawrence Livermore Laboratory, UCID-19771 (1982).

7. D. V. Rosenburg, Method for the Numerical Solution of Partial Differential

Equation (Elsevier Press, Editor: R. Bellman, 1969).

20



-0 -


